CH stretching vibration of N-methylformamide as a sensitive probe of its complexation: infrared matrix isolation and computational study.
نویسندگان
چکیده
The complexes between trans-N-methylformamide (t-NMF) and Ar, N(2), CO, H(2)O have been studied by infrared matrix isolation spectroscopy and/or ab initio calculations. The infrared spectra of NMF/Ne, NMF/Ar and NMF/N(2)(CO,H(2)O)/Ar matrices have been measured and the effect of the complexation on the perturbation of t-NMF frequencies was analyzed. The geometries of the complexes formed between t-NMF and Ar, N(2), CO and H(2)O were optimized in two steps at the MP2/6-311++G(2d,2p) level of theory. The four structures, found for every system at this level, were reoptimized on the CP-corrected potential energy surface; both normal and CP corrected harmonic frequencies and intensities were calculated. For every optimized structure the interaction energy was partitioned according to the SAPT scheme and the topological distribution of the charge density (AIM theory) was performed. The analysis of the experimental and theoretical results indicates that the t-NMF-N(2) and CO complexes present in the matrices are stabilized by very weak N-H···N and N-H···C hydrogen bonds in which the N-H group of t-NMF serves as a proton donor. In turn, the t-NMF-H(2)O complex present in the matrix is stabilized by O-H···O(C) hydrogen bonding in which the carbonyl group of t-NMF acts as a proton acceptor. Both, the theoretical and experimental results indicate that involvement of the NH group of t-NMF in formation of very weak hydrogen bonds with the N(2) or CO molecules leads to a clearly noticeable red shift of the CH stretching wavenumber whereas engagement of the CO group as a proton acceptor triggers a blue shift of this wavenumber.
منابع مشابه
C≡N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: what determines its frequency?
Recently it has been suggested that the C≡N stretching vibration of a tryptophan analog, 5-cyanotryptophan, could be used as an infrared probe of the local environment, especially the hydration status, of tryptophan residues in proteins. However, the factors that influence the frequency of this vibrational mode are not understood. To determine these factors, herein we carried out linear and non...
متن کاملComplexation dynamics of CH3SCN and Li(+) in acetonitrile studied by two-dimensional infrared spectroscopy.
Ion-molecule complexation dynamics were studied with CH3SCN and Li(+) in acetonitrile by vibrationally probing the nitrile stretching vibration of CH3SCN. The nitrile stretching vibration of CH3SCN has a long lifetime (T1 = ∼90 ps) and its frequency is significantly blue-shifted when CH3SCN is bound with Li(+) ions to form a CH3SCNLi(+) complex in acetonitrile. Such spectral properties enable u...
متن کاملCH Stretching Region: Computational Modeling of Vibrational Optical Activity.
Most organic compounds provide vibrational spectra within the CH stretching region, yet the signal is difficult to interpret because of multiple difficulties in experiment and modeling. To better understand various factors involved, the ability of several harmonic and anharmonic computational approaches to describe these vibrations was explored for α-pinene, fenchone, and camphor as test compou...
متن کاملSpectrophotometric and Electrochemical Study of the Complexation of Iodine with 1,10-Diaza-18-Crown-6 in Acetonitrile Solution
The complexation reaction between iodine and 1,10-Diaza-18-Crown-6 (DA18C6) has been studied in acetonitrile by spectrophotometric, biamperometric and conductometric techniques. The results are indicative of the formation of [(CH3CH)nI+.I¯3] from iodine and acetonitrile, and the formation of DA18C6 I+. I¯ from DA18C6 and [(CH...
متن کاملPicosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. I. Intramolecular vibrational energy redistribution of the OH and CH stretching vibrations of bare phenol.
The intramolecular vibrational energy redistribution (IVR) of the OH stretching vibration of jet-cooled phenol-h6 (C6H8OH) and phenol-d8 (C6D8OH) in the electronic ground state has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. The OH stretching vibration of phenol was excited with a picosecond IR laser pulse, and the subsequent temporal evolutions of the initially...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 31 شماره
صفحات -
تاریخ انتشار 2011